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How Do You Compare Forecast Skill/Scores?
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Compare Mean Square Error?

RMSEInit

RMSENoInit
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Figure 11.7: Near surface air temperature forecast quality for the forecast time 2–5 (left column) and 6–9 (right 4 

column) years. Top row: Ensemble-mean correlation of the CMIP5 Init multi-model with five-year interval between 5 

start dates over the period 1960–2005. A combination of temperatures from GHCN/CAMS air temperature over land, 6 

ERSST and GISTEMP 1200 over the polar areas is used as a reference. Black dots correspond to the points where the 7 

correlation is statistically significant with 95% confidence using a one-sided t-test taking into account the 8 

autocorrelation of the observational time series. Second row: Ensemble-mean correlation difference between the CMIP5 9 

Init and NoInit multi-model experiments. A Fisher Z-transform of the correlations has been computed, the colours 10 

showing the Z difference in correlation space. Contours are used for areas where the ensemble-mean correlation of at 11 

least 75% of the single forecast systems has the same sign as the multi-model ensemble mean correlation. Dots are used 12 

for the points where the Z differences are statistically significant with 90% confidence taking into account the 13 

autocorrelation of the observational time series. Third row: Root mean square skill score for the multi-model ensemble 14 

mean of CMIP5 Init experiment. Black dots correspond to the points where the skill score is statistically significant 15 

with 95% confidence using a one-sided F-test taking into account the autocorrelation of the observation minus 16 

prediction time series. Bottom row: Ratio between the ensemble-mean root mean square error of Init and NoInit. Dots 17 

are used for the points where the ratio is significantly above or below one with 90% confidence using a two-sided F-test 18 

taking into account the autocorrelation of the observation minus prediction time series. Contours are used for areas 19 

where the ratio of at least 75% of the single forecast systems has a value above or below one according to the multi-20 

model ensemble mean correlation. Poorly observationally sampled areas are masked in grey. The model original data 21 

have been bilinearly interpolated to the observational grid. The ensemble mean of each forecast system has been 22 

estimated before computing the multi-model ensemble mean. 23 
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From fig. 11.7 of AR5; ratio of rmse between initialized and non-initialized
decadal hindcasts for years 2-5. Dots show 5% significant difference based on
one-sided F-test.
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Test Equality of Variance (σ2
1 = σ2

2)

Statistic: Let s2
1 and s2

2 be the sample variances:

F =
s2
1

s2
2

.

Theorem: If samples are independent and identically distributed as a
Gaussian, then

F ∼ Fν1,ν2 .

where ν1 and ν2 are the appropriate degrees of freedom.
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Idealized Forecast/Observation System

observation = ao signal + noiseo

forecast 1 = a1 signal + noise1

forecast 2 = a2 signal + noise2

MSE1 / MSE2
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Compare Mean Square Error?

MSSS = 1− RMSEInit

RMSENoInit

typically areas where the strength of the model response is

too large compared to the observations for a given

correlation.
The MSSS of the initialized hindcasts relative to the

uninitialized hindcasts shows that areas of improved skill

due to initialization differ between the two models (Figs. 3,

4, top panels, the positive or red areas). For example, the

initialized DePreSys hindcasts for temperature improve
over the uninitialized hindcasts in the North Atlantic,

whereas in the CanCM4 temperature hindcasts the

DePreSys MSSS: Years 2-9 CanCM4 MSSS: Years 2-9 

MSSS Initialized Run 

MSSS Uninitialized Run 

Initialized vs Uninitialized 

MSSS Initialized Run 

MSSS Uninitialized Run 

Initialized vs Uninitialized 
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Fig. 3 Mean squared skill score (MSSS) for decadal temperature
hindcasts from the DePreSys prediction system of the Hadley Centre
(left) and the CanCM4 prediction system of the Canadian Climate
Centre (right). Top row MSSS comparing the initialized hindcasts
(‘‘forecasts’’) and the uninitialized hindcasts (‘‘reference’’) as predic-
tions of the observed climate; middle row MSSS comparing the
initialized hindcasts (‘‘forecasts’’) and the climatological mean

(‘‘reference’’); bottom MSSS between the uninitialized hindcasts
(‘‘forecasts’’) and the climatological mean (‘‘reference’’). Observed
and model data has been smoothed as described in text. The forecast
target is year 2–9 following the initialization every 5 years from 1961
to 2006 (i.e. 10 hindcasts). Contour line indicates statistical signif-
icance that the MSSS is positive at the 95 % confidence level

A verification framework

123

from Goddard et al. (2012). Contour line “indicates significance that
MSSS is positive at 95% confidence level,” based on bootstrap method.
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Idealized Forecast/Observation System

observation = ao signal + noiseo

forecast 1 = a1 signal + noise1

forecast 2 = a2 signal + noise2

MSE1 / MSE2
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Conclusion

A rigorous significance test of skill differences does not exist when

I validation measure is calculated using the same verification.

I the prediction models are not nested.
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Rigorous Ways to Compare Forecasts

Compare nested prediction models.

or

Confirm that observations are consistent with forecast distribution,
then test differences in forecast spread.

or

Compare skills estimated from independent verifications.
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Does the Multi-Model Ensemble Enhance Skill?

Consider the nested regression models

single model O = a Fi + + ε

combination O = a Fi + b Mi + ε

obs forecast multimodel error
model i mean except i

Is MSE[combination] < MSE[single model] ?
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We are assessing whether combining two forecasts significantly
improves the forecast relative to one forecast.

We are not assessing whether one forecast in isolation is
significantly better than another.
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Equivalence

single model O = a Fi + + ε

combination O = a Fi + b Mi + ε

Testing the hypothesis

MSE[combination] = MSE[single model]

is equivalent to testing the hypothesis

b = 0
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Hypothesis Test

If the null hypothesis b = 0 is true, then

t =
bleast squares

σb

has a t distribution with N − 3 degrees of freedom.
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National Multi-Model Ensemble

I Hindcasts initialized every month from 1982-2010

I At least 6 month lead

I Analyze NINO3.4

I Separate climatologies for 1982-1999 and 2000-2010

I Verification: OISST

model ensemble size

CMC1-CanCM3 10
CMC2-CanCM4 10

COLA-RSMAS-CCSM3 6
GFDL-CM2p1 10
NASA-GMAO 11
NCEP-CFSv1 15
NCEP-CFSv2 24
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t values mutual information
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Second Approach: Compare Calibrated Forecasts

If observations are drawn from the forecast distribution, then

1

1 + 1
E

〈MSE 〉 = σ2
forecast

If the calibration hypothesis cannot be rejected, then a significantly
better forecast would have significantly smaller noise:

σ2
forecast,1 < σ2

forecast,2
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Confidence Interval for Variance

SX

SY

SX

SY

No Significant Difference

Significant Difference

The standard 95% confidence interval for variance can be modified
slightly to correspond precisely to an F-test for equality of variance.
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Standard Deviation
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Summary

I Testing the significance of a difference in skill is difficult because

I skills are not independent
I dynamical prediction models are not nested

I The bootstrap distribution is sensitive to the sample that actually
occurs, even for large bootstrap samples.

I Two ways to rigorously compare skills:

I compare skills calculated from independent verifications
I test calibration, then test differences in forecast spread

I For National Multi-Model Ensemble

I MSE intervals are large and overlap with each other
I MSE consistent with forecast spread for 4 models.
I Of these, multi-model forecast has significantly worse score.

I Proposed method for deciding whether multi-model enhances skill.

I Every model has periods in which multi-model enhances skill.
I Multi-model systematically improves skill during spring barrier.
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